Groups Similar Search Look up By Text Browse About

AMD shows newest Radeon Instinct MI60 graphics chips for data centers

Advanced Micro Devices unveiled its Radeon Instinct MI60 graphics processing unit (GPU) for the data center. It promises 1.25 times performance and twice the transistor density of the previous generation. David Wang, senior vice president of engineering in the Radeon Technologies Group, made the announcement at AMDs press and analyst day in San Francisco. He said it can deliver up to 7.4 teraflops of 64-bit floating point peak performance. The new Vega-based GPUs debuting later this year will be built on a 7-nanometer manufacturing process. AMD also described its Zen 2 architecture for new families of central processing units (CPUs) coming in 2019. The GPUs in the cloud will be useful for cloud gaming, virtual desktops and workstations, machine learning, and high-performance computing, Wang said. The total available market is $12 billion by 2021, Wang said. This is the worlds first 7-nanometer GPU, Wang said. It has 13.2 billion transistors, or twice the density of the previous generation, and 1.25 times the performance. It is the worlds fastest floating point 64 and floating point 32 PCIe GPU, he said. AMD will also have an MI50 version GPU available. One Epyc central processing unit (CPU) can connect without bridges to four Radeon Instinct GPUs via the Infinity fabric. The chip also has a third generation of AMDs hardware virtualization, so many users can use a single GPU. This is really our differentiation, and it comes for free, Wang said. In the data center, the GPU can handle machine learning tasks. AMD is releasing ROCm 2.0 open source software for machine learning tasks. Supporters include Baidu, which is using AMD tech. On one benchmark, AMDs MI60 GPU is 8.8 times faster on the DGEMM benchmark than the previous generation 14-nanometer MI25 GPU. On Resnet-50 image processing, it is 2.8 times faster. Wang claimed that AMDs chip can acheive comparable performance to Nvidias Tesla V100 PCIe rival chip. More significant, noted analyst Kevin Krewell of Tirias Research, is that AMDs die size (size of the chip) is less than half the size of the Nvidia chip. That translates into lower costs and lower prices. Peter McGuinness, CEO of startup Highwai, showed how the chip can be used to produce simulated worlds for machine learning, using massive data sets. He showed in real-time how the AMD chip can be used to process data from a self-driving car in real-time, simulating what would be necessary for a car moving down a street. The AMD Radeon Instinct MI60 chip is expected to ship to data center customers by the end of 2018, and the AMD Radeon Instinct MI50 accelerator is expected to begin shipping by the end of the first quarter of 2019. Wang also teased a MI Next chip coming in the future with software compatibility to previous chips. Patrick Moorhead, analyst at Moor Insights & Strategy, said, AMD moved the ball down the field from a hardware perspective with Instincts 7-nanometer design. I am impressed with its one terabyte per second memory bandwidth, ganging with Epyc and Infinity Fabric, and density. I believe its degree of success will be directly related to it uptake of ROCm 2.0 software into customers workflow. AMD Radeon has always had good hardware and it takes hardware, software plus go-to-market to fully move the needle.

AMD reveals Zen 2 processor architecture in bid to stay ahead of Intel

Advanced Micro Devices revealed the Zen 2 architecture for the family of processors that it will launch in the coming years, starting with 2019. The move is a follow-up to the competitive Zen designs that AMD launched in March 2017, and it promises two-times improvement in performance throughput. AMD hopes the Zen 2 processors will keep it ahead of or at parity with Intel, the worlds biggest maker of PC processors. The earlier Zen designs enabled chips that could process 52 percent more instructions per clock cycle than the previous generation. Lisa Su, CEO of Santa Clara, California-based AMD, made the announcement at an AMD press and analyst event in San Francisco. So much has really happened in the last two years, she said. Ive been CEO for four years. Its been an incredible four years. But we are just at the beginning of our journey. Zen has spawned AMDs most competitive chips in a decade, including Ryzen for the desktop, Threadripper (with up to 32 cores) for gamers, Ryzen Mobile for laptops, and Epyc for servers. In the future, you can expect to see Zen 2 cores in future models of those families of chips. AMDs focus is on making central processing units (CPUs), graphics processing units (GPUs), and accelerated processing units (APUs) that put the two other units together on the same chip. Zen 2 is our next-generation system architecture, Su said, noting chips using it will be made with 7-nanometer manufacturing, where the width between circuits is seven billionths of a meter. Su said the new chips will be targeted for the workloads of the future, including machine learning, big data analytics, cloud, and other tasks. AMD is going after the $29 billion total available market for data center chips by 2021. We see strong double-digit growth for the foreseeable future for the overall market, she said. We are not looking at incremental changes. The products you are seeing today are the products of the decisions we made four or five years ago. They were bets on where we think the market was going. The Zen-based designs are AMDs most competitive in a decade, and it now has every major computer maker using the Epyc chips for servers, from HP Enterprise to Dell. It is also feeding chips to data centers that run cloud deployments for Microsoft, Baidu, Tencent, Oracle, and others. AMD and Amazon Web Services announced today that Amazon Elastic Compute Cloud will use AMD Epyc CPUs, so customers can get access today to instances running on the AMD processors. Intel noted that it has an extensive relationship with AWS. The next-generation Epyc platform is code-named Rome, which will debut next year with 7-nanometer technology. Mark Papermaster, AMD chief technology officer, said AMD took a holistic design approach to creating Zen 2. Zen 2 marks the delivery of our promise of continuity, he said. We called a play and we are delivering. We are executing. Zen 2 chips are sampling today at 7-nanometer manufacturing, compared to the shipping 14-nanometer Zen processors that debuted in 2017. Zen 3 is on track to debut on 7-nanometer in 2020. AMD is using TSMC, the chip contract manufacturer, to make its 7-nanometer chips. Intel, meanwhile, has delayed its equivalent chips, dubbed 10-nanometer but at the same technology level, until late 2019. Zen 2 can get twice the throughput thanks to better branch prediction, or predicting what kind of processing will be necessary for the next computation. It also has better 256-bit load/store floating point processing, or double the previous generation. Zen 2 will also have stronger built-in security, where data can be fully encrypted as it is transferred to memory. You will see a huge jump as we go to Zen 2 products, Papermaster said. Intel has not yet made a comment, but it has scheduled a December 11 event to talk about its architecture. AMD also has a chiplet design approach with modular components on the chip that can more efficiently feed and receive data from processor cores. It will also have higher instructions per clock than the original Zen products. Kevin Krewell, analyst at Tirias Research, noted that AMD did not describe the instructions per clock cycle for Zen 2, but he assumes it will be better than the original Zen. He noted the doubled floating point performance figure was impressive. Forrest Norrod, senior vice president at AMD said that Epyc adoption can lead to 45 percent lower total cost of ownership (TCO) compared to Intel-based systems. He said that comes as a result of lower admin, licensing, hardware, and space costs. Pete Ungaro, CEO of Cray, said onstage that Crays next Shasta supercomputer with use AMD Epyc processors. The machine will be made for government agencies such as the Lawrence Berkeley National Laboratory and run at 100 petaflops.